A simple matrix form for degree reduction of Bézier curves using Chebyshev-Bernstein basis transformations
نویسندگان
چکیده
We use the matrices of transformations between Chebyshev and Bernstein basis and the matrices of degree elevation and reduction of Chebyshev polynomials to present a simple and efficient method for r times degree elevation and optimal r times degree reduction of Bézier curves with respect to the weighted L2-norm for the interval [0,1], using the weight function wðxÞ 1⁄4 1= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 4x 4x2 p . The error of the degree reduction scheme is given, and the degree reduction with continuity conditions is also considered. 2006 Elsevier Inc. All rights reserved.
منابع مشابه
Degree Elevation of Interval Bezier Curves Using Legendre-Bernstein Basis Transformations
This paper presents a simple matrix form for degree elevation of interval Bezier curve using LegendreBernstein basis transformations. The four fixed Kharitonov's polynomials (four fixed Bezier curves) associated with the original interval Bezier curve are obtained. These four fixed Bezier curves are expressed in terms of the Legendre polynomials. The process of degree elevations r times are app...
متن کاملPii: S0167-8396(02)00164-4
We study the relationship of transformations between Legendre and Bernstein basis. Using the relationship, we present a simple and efficient method for optimal multiple degree reductions of Bézier curves with respect to the L2-norm. 2002 Elsevier Science B.V. All rights reserved.
متن کاملTransformation of Chebyshev–bernstein Polynomial Basis
In paper [4], transformation matrices mapping the Legendre and Bernstein forms of a polynomial of degree n into each other are derived and examined. In this paper, we derive a matrix of transformation of Chebyshev polynomials of the first kind into Bernstein polynomials and vice versa. We also study the stability of these linear maps and show that the Chebyshev–Bernstein basis conversion is rem...
متن کاملJacobi–bernstein Basis Transformation
Abstract — In this paper we derive the matrix of transformation of the Jacobi polynomial basis form into the Bernstein polynomial basis of the same degree n and vice versa. This enables us to combine the superior least-squares performance of the Jacobi polynomials with the geometrical insight of the Bernstein form. Application to the inversion of the Bézier curves is given. 2000 Mathematics Sub...
متن کاملBezier curves based on Lupas (p, q)-analogue of Bernstein polynomials in CAGD
In this paper, we use the blending functions of Lupaş type (rational) (p, q)-Bernstein operators based on (p, q)-integers for construction of Lupaş (p, q)-Bézier curves (rational curves) and surfaces (rational surfaces) with shape parameters. We study the nature of degree elevation and degree reduction for Lupaş (p, q)-Bézier Bernstein functions. Parametric curves are represented using Lupaş (p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Mathematics and Computation
دوره 181 شماره
صفحات -
تاریخ انتشار 2006